Hydrogen and alternative energy vectors

Generation, storage and utilisation of synthetic chemical energy carriers and synthetic fuels (e.g. hydrogen), including the materials and devices used for their generation and storage and any socio-economic and environmental issues related to these technologies.

This research area reduced over the last Delivery Plan and we now propose to maintain it at its current level as a proportion of the EPSRC portfolio, with a focus on incorporating hydrogen and other energy vectors into energy systems, reflecting the Energy theme priority of systems integration. Within the area, we would like to see:

  • Particular focus on hydrogen production at scale, incorporating hydrogen into current infrastructures and linking hydrogen to renewables and whole energy systems
  • Consideration given to the economic and social implications of incorporating hydrogen into the national gas grid, (Evidence source 1) and to specific consequences of hydrogen use at a domestic level
  • Work carried out to understand the impact of hydrogenEPSRCs incorporation into the gas grid, from its use in gas turbines to its transmission via the grid both as a pure gas and as an addition to natural gas

Hydrogen and other chemical energy stores have typically been excluded from calls for proposals in Energy Storage, but future calls in that area will also include systems which focus on the chemical means to store energy.

We want to ensure that the UK has a ready supply of trained specialists who understand hydrogen generation, transmission, storage and use, whether as part of the gas grid or in more specific applications.

The strategic direction of this research area depends strongly on the direction that government and industry take in terms of policy and national infrastructure. (Evidence source 2,3) It is important that the community is responsive to the needs of this evolving system, and equally important that voices within fundamental research contribute to the decision-making processes.


Hydrogen has substantial potential as an energy carrier and a store of energy in the UK energy system. The majority of our current hydrogen is generated from steam methane reforming, using fossil-fuel derived methane. While this natural gas is lower in emissions than oil and coal, the hydrogen produced is still linked to carbon dioxide (CO2) emissions. (Evidence source 4) Moreover, although this method of hydrogen generation can be coupled with carbon capture and storage to lower the CO2 released to the atmosphere, the ultimate long-term goal is to be able to produce carbon-neutral hydrogen by electrolysis or thermal cracking at a large scale using renewable energy. (Evidence source 5,6)

The UK has strengths in very specific areas of Hydrogen and Alternative Energy Vectors (e.g. storage and safety), in combination with a strong gas infrastructure. There is also a strong electrochemistry community to work on the challenges of electrolytic hydrogen production, while the underpinning technology has a lot in common with fuel cells and redox-flow batteries. The Fuel Cells and their Fuels CDT (Centre for Doctoral Training) ensures a steady stream of qualified specialists in this area.

Hydrogen and Alternative Energy Vectors is seen as part of a group of research areas which share a pool of electrochemical researchers (e.g. Energy Storage, Fuel Cell Technology, Materials for Energy Applications, and Electrochemical Sciences). Many researchers in one area will have interests in one or more of the others and can move from one to another relatively easily. (Evidence source 7)

This research area will principally contribute to the following Ambitions in the Resilient and Productive nation outcomes:

R1: Achieve energy security and efficiency

An energy system based primarily on or incorporating hydrogen or other synthetic fuels generated from locally produced renewable electricity would allow secure domestic energy production for industrial, domestic and automotive needs. The efficiency of the system will entirely depend on the efficiency of the process generating the fuel, but these systems are very likely to perform well for long-term storage or long-range transmission.

R2: Ensuring a reliable infrastructure which underpins the UK economy

Very similar to the way that current stores of fossil fuels contribute to the reliability of our energy network, stores of hydrogen or synthetic fuels can be used to control production of energy in response to demand.

P1: Introduce the next generation of innovative and disruptive technologies

This research area offers the possibility of a low/zero-carbon version of our current chemical-based energy system. The potential environmental benefits of fuel cells depend greatly on a low/zero-carbon fuel source powering them.

P2: Ensure affordable solutions for national needs

Hydrogen (or other synthetic fuels) would require a large initial investment in infrastructure, but could solve a number of problems posed by decarbonising the energy system with just one set of compatible technologies.7 At smaller scales, they can solve the problem of interseasonal or annual energy storage.

  1. Committee on Climate Change, The Fifth Carbon Budget (PDF), (2015).
  2. Royal Academy of Engineering, A Critical Time for UK Energy Policy (PDF), (2015).
  3. Low Carbon Innovation Coordination Group (LCICG), Hydrogen for Transport Summary Report (PDF), (2014).
  4. UK Government, 2050 Pathways Analysis (PDF), (2010).
  5. Optoelectronics Industry and Technology Development Association (OITDA), Annual Technical Report (PDF) 2014, (2015).
  6. I. Cerri, F. Lefebvre-Jourd, P. Holtappels, K. Honegger, T. Stubos and P. Millet, (2012), Scientific Assessment in Support of the Materials Roadmap Enabling Low Carbon Energy Technologies: Hydrogen and Fuel Cells (PDF), Publications Office of the European Union (EUR; No.25293 EN).
  7. Supergen reviews, event attendance and conversations with relevant bodies.

Research area connections

This diagram shows the top 10 connections between Research Areas within the EPSRC research portfolio. The depth of the segment relates to value of grants and the width of the segment relates to the number of grants shared by those two Research Areas. Please click to see the related Research Area rationale.


We aim to maintain this area as a proportion of the EPSRC portfolio.

Visualising our Portfolio (VoP)
Visualising our portfolio (VoP) is a tool for users to visually interact with the EPSRC portfolio and data relationships.

EPSRC support by research area in Hydrogen and alternative energy vectors (GoW)
Search EPSRC's research and training grants.

Contact Details

In the following table, contact information relevant to the page. The first column is for visual reference only. Data is in the right column.

Name: Dr Katharine Dunn
Job title: Senior Portfolio Manager
Department: Energy
Organisation: Engineering Physical Sciences Research Council
Telephone: 01793 444297