Willetts announces £85 million for three key technologies

Supplementary content information

Metallic spheres floating against a grey background

Three key technologies, identified in the pre-budget statement by The Chancellor of the Exchequer as part of the government’s ‘eight great technologies’ to drive UK growth, are to receive an £85 million investment for capital equipment.

Speaking at the Global Intelligent Systems conference in London, David Willetts, Minister for Universities and Science, announced the results of a call for proposals issued by the EPSRC.

Funding will be made available to more than 20 universities across the UK to support and strengthen existing research in the areas of Robotics and Autonomous systems, Advanced Materials and Grid-scale energy storage.

Minister for Universities and Science, David Willetts said: For Britain to get ahead in the global race we have to back emerging technologies and ensure our universities have the latest equipment. This capital investment will help scientists make new discoveries and take their research through to commercial success. It will drive growth and support the Government’s industrial strategy.

The investment will underpin key sectors for the UK economy, including automotive, manufacturing, aerospace, energy and healthcare.

  • Robotics and autonomous systems will receive

    EPSRC Grant of £25 million with additional funding contributions of £8.4 million from higher education institutions and £6 million from industrial partners
    = Total of £39.4 million

  • Advanced materials will receive

    EPSRC Grant of £30 million with additional funding contributions of £11.7 million from higher education institutions and £5.5 million from industrial partners
    = Total of £47.2 million

  • Grid-scale energy storage will receive

    EPSRC Grant of £30 million with additional funding contributions of £9.8 million from higher education institutions and £5.8 million from industrial partners
    = Total of £45.6 million

Professor David Delpy, EPSRC Chief Executive said: The successful bids will build capability in areas that are vital for the country and where exciting research is already being carried out. Developing new ways to storing energy, creating new materials for manufacturing and other industries, and increasing our understanding of how autonomous systems communicate, learn and work with humans.

Examples of facilities benefiting from funding are:

  • Micro-engineering facilities at Imperial College London for the development of miniaturised robots for surgery and targeted therapy. Which will be supported by advances in materials, micro-fabrication and micro-machining, as well as rapid prototyping technologies.

    These robots are expected to have impact on minimally invasive procedures including gastrointestinal, urological, neuro, cardiac, endovascular, paediatric, and orthopaedic surgeries.

  • An internationally leading facility at the University of Bristol for understanding the evolving microstructure of advanced composite materials.

    The facility will build on the Advanced Composites Centre for Innovation and Science which has major industrial backing and works closely with the National Composites Centre, part of the High Value Manufacturing Catapult.

  • A new research facility at Brunel University to deliver revolutionary new manufacturing methods for UK carmakers. There will be a focus on reusing metal many times to reduce new metal mining and revolutionary new metal casting techniques, will benefit British car makers . The £14 million Advanced Metal Casting Centre (AMCC) at Brunel will bridge the gap between fundamental research and full-scale industrial trials.

    The centre is jointly funded by EPSRC, the aluminium automotive sheet and extrusions solutions provider Constellium, Brunel, and a major luxury car manufacturer.

  • The creation of a Centre for Cryogenic Energy Storage at the University of Birmingham, in collaboration with the University of Hull and industrial partners, to accelerate development of cryogenic energy storage (CES) technology and novel materials at lower cost. The new Centre will be the UK’s first dedicated research facility for energy storage using cryogenic liquids, comprising new laboratories, state of the art equipment, and a major demonstration plant. This will keep the UK at the leading edge of CES research and development.

    The ‘liquid air’ technology could revolutionise the storage of energy, reducing the costs of integrating intermittent generation into the electricity system and ensuring power is available when it is most needed.

    Cryogenic energy storage systems use off-peak electricity to liquefy air. The cryogenic liquid that is formed is stored in a vessel then vaporised into a gas during an expansion process, which drives a turbine. This system generates electricity when it is most needed; taking off-peak electricity and using it at peak times will solve the ‘wrong-time wrong-place’ energy generation and supply problem. A grid-connected pilot plant has been operating in Slough since 2010.

For media enquiries, contact:

EPSRC Press Office
Tel: 01793 444 404.

Notes for Editors:


The EPSRC is the UK’s main agency for funding research in engineering and the physical sciences. EPSRC invests around £800 million a year in research and postgraduate training, to help the nation handle the next generation of technological change. The areas covered range from information technology to structural engineering, and mathematics to materials science. This research forms the basis for future economic development in the UK and improvements for everyone’s health, lifestyle and culture. EPSRC works alongside other Research Councils with responsibility for other areas of research. The Research Councils work collectively on issues of common concern via Research Councils UK.

Projects to be funded through £85 million capital call are:

£25 million for Robotics and Autonomous Systems

  • Imperial College London
    £4 million - Micro-Engineering Facility for Medical Robotics
  • University of Oxford
    £3 million - Mobile Robotics: Enabling a Pervasive Technology of the Future
  • University College Londo
    £2.4 million - Robotic Teleoperation for Multiple Scales: Enabling Exploration, Manipulation and Assembly Tasks in New Worlds Beyond Human Capabilities
  • University of Warwick
    £3.1 million - Robotics and Autonomous Systems: The Smart and Connected Vehicle
  • University of Southampton
    £2.8 million - Robotics and Autonomous Systems: Southampton University Capital Proposal
  • University of Edinburgh and Heriot-Watt University
    £6.1million - The Edinburgh Robotic and Autonomous Systems Interaction Research Facility
  • University of Leeds
    £2.6 million - National Facility for Innovative Robotic Systems
  • University of Sheffield and University of Liverpool
    £1 million - Human-Machine Co-operation in Robotics and Autonomous Systems

£30 million for Advanced Materials

  • University of St Andrews
    £3.7 million - Characterisation and Manipulation of Advanced Functional materials and their Interfaces at the Nanoscale
  • University of Bristol
    £3.1 million - Composites Innovation: from Atoms to Applications
  • Brunel University
    £3.9 million - Scale-up Facilities for Resource Efficient Processing of High Performance Alloys
  • The University of Manchester
    £4.3 million - On the Nano-engineering of Surfaces In Demanding Environments (ON-SIDE)
  • University of Glasgow
    £3 million - Capability to Improve the Energy Efficiency of Electronic and Optoelectronic Devices
  • Newcastle University
    £2.7million - Ion-Beam-Analysis User's Service for Interface Characterisation and Engineering – NEIBUS
  • University of Oxford
    £3.5 million - Multifunctional high performance alloys for extreme environments
  • University of Nottingham
    £2. 7 million - Multifunctional Additive Manufacturing
  • University of Southampton
    £3.3 million - Development and Manufacture of Advanced Composite Materials

£30 million for Grid Scale Energy Storage

  • Imperial College London, University of Birmingham, University of Cambridge, Cardiff University, Newcastle University, University of Oxford, University of Sheffield, University of St Andrews, University College London.
    £14.3 million - Energy Storage for Low Carbon Grids
  • University of Sheffield, Aston University, University of Southampton
    £4.9 million - Grid Connected Energy Storage Research Demonstrator
  • The University of Manchester, University of Liverpool
    £3.3 million - Manchester-Liverpool Advanced Grid-scale Energy Storage R&D facilities
  • University of Birmingham, University of Hull
    £5.9 million - Centre for Cryongenic Energy Storage
  • Loughborough University, University of Nottingham, University of Warwick
    £1.7 million - ThermExS Lab, thermal energy storage lab

Reference: PN 52-13