Real world complex systems and cross-disciplinary research

EPSRC Cross-Disciplinarity and Co-Creation Workshop
Sheffield, 16/17 February 2017

Professor Susan Stepney
York Centre for Complex Systems Analysis
from silos to interdisciplinarity

“The world has problems while universities have disciplines”

G. Wilson, JWUF, 2009
multidisciplinarity

- studying a research topic in several disciplines simultaneously
 - a painting: art history and mathematical geometry
- goals: limited to the framework of (home) disciplinary research
 - others as a “service industry”

[Nicolescu]
interdisciplinarity

- goal: transfer of methods from one discipline to another
 - new capabilities, new approaches, even new disciplines

[Nicolescu]
transdisciplinarity

• between, across, *beyond* disciplines
• goal: “understanding the world” (not just one disciplinary view of it)
 ▪ a unity of knowledge
Challenges
systems, and complex systems

• system:
 - a set of interacting components and relationships
 - with high level structure and behaviour
 - forming an integrated whole

• complex system – also:
 - strong local interactions resulting in global behaviour
 - heterogeneous mix of networks and hierarchies
 - physical, technical, social, ...
 - feedback between levels
 - self-organisation
 - growth, adaptation, evolution, change
 - emergence and innovation
 - ...

complex systems science

• a **complex problem** cannot be tackled by a single discipline alone
 ▪ multiple stakeholders with differing requirements and goals
 ▪ ‘soft’ social and ‘hard’ technical issues
 ▪ issues from multiple natural and engineered domains

• it requires an **interdisciplinary, complex systems** approach
“simple” complexity

- **multiple homogeneous agents** + **simple interaction rules** = complex behaviours
- eg: “boids”

- but *real world* complexity isn’t simple!

http://www.red3d.com/cwr/boids/
real world “complicated” complexity

- multiple **heterogeneous** agents + **complex environment** + multiple **complicated** rules of interaction and **growth** = real world behaviours

- eg: deer populations

[Ford10]
complex systems \Rightarrow interdisciplinary working

- **multiple** domains
 - management, law, economics, engineering, psychology, systems biology, environment, ...

- **multiple** techniques
 - experiments, mathematics, statistics, computer models, ...

- no one person can be expert in all these!

- it takes *time* and *effort* to develop the necessary interdisciplinary teams
Process
• York Centre for Complex Systems Analysis

• we are an **interdisciplinary** team of 90+ staff and students

 ▪ we have associate members from other universities:
 ✷ Birmingham – Cambridge – Durham – Madrid – Manchester – Oxford – Warwick ...

• we focus on real world complex systems requiring interdisciplinary solutions – and a **common** mindset:

 ▪ systems thinking
 ✷ “**the totality is not, as it were, a mere heap, but the whole is something beside the parts**”
 – Aristotle, ~350 BCE [tr. W. D. Ross 1924]
 ✷ “**the whole is other than the sum of its parts**”
YCCSA problem domains, and tools

- Socio-technical Systems
- Ecosystem Interactions
- Novel Computation
- Resilient Systems
- System Simulation
- Gamification
- Robotics
- System Forensics
- Cancer
- Immunology
- Viruses
- Fisheries
- Complex Systems Science
 - Networks
 - Spectroscopy
 - Computational Modelling
 - Bio-inspired Search
 - Swarm Engineering
 - Narratives
 - Statistics
 - Mathematical Modelling
YCCSA’s three stage approach

• our process for building collaboration, trust and respect

1. coming together

2. thinking together

3. working together

• developed through EPSRC “Bridging the Gaps” TRANSIT funding, 2008
stage 1: coming together

- YCCSA process for building collaboration, trust and respect

- weekly “cake” seminars
 - 2 hour format

- reading groups
 - scientists / arts & humanities

- visitors

- workshops, ...

- goal: to learn each others disciplinary languages and cultures
stage 2: thinking together

- YCCSA process for building collaboration, trust and respect
- learning the system domain, from the different perspectives
- small, risk-free projects
 - YCCSA summer school
 - pump priming feasibility studies
- goal: to **co-create** research topics, proposals and projects
stage 3: working together

• YCCSA process for building collaboration, trust and respect

• funded projects

• co-supervising research students across disciplines
 ▪ CS/Biology; Chemistry/CS; Maths/Biology; Electronics/CS; ...
 ▪ goal: teams of students

• goal: to do transformative research

“I have never seen any scientific group working so well together and where communication is flowing so effortlessly across disciplines. What you have is truly remarkable.”

— Dr Paolo Dini, Senior Research Fellow, Dept Media and Communications, London School of Economics
Benefits
btw, it’s not for everyone!

- what kind of researcher are you / do you want to be?
 - all kinds are valid / valuable!
 - all kinds have costs and benefits

- research progress: guarantees v excitement
 - incremental development
 - “standing on the shoulders of giants”
 - radical novelty
 - breaking a path through unknown jungle

- disciplinarity: depth v breadth
 - single discipline
 - multidisciplinary
 - interdisciplinary
 - transdisciplinary
• YCCSA research students are fully integrated into our research culture and research activities

• “YCCSA students are an excellent advertisement for interdisciplinary research ... they feel supported and empowered to achieve high-quality research”
 – external review report

• “It is an advantage to have to explain research to non-specialists as the questions raised tended to be more unique and challenging.”
 – YCCSA research student
benefits of interdisciplinary working

• interesting way to work
 - it you like that sort of thing ...

• no one is expert in all domains and techniques

• so, everyone has something to learn from everyone else
 - no room for monster egos
 - everyone learns : students can teach their supervisors
 - learn to be comfortable saying “I don’t understand”
 - joy of learning, and of building a shared understanding

• excitement of research that is other than the sum of its parts
further reading

